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The recently proposed method of m o m e n t u m  electron density for interatomic 
interactions is applied to the two ~- states of the H~- system. The processes 
of the attractive 2pTr, and repulsive 3dTrg interactions are analysed based on 
the behaviour  of the m o m e n t u m  density and Compton  profile. The results 
are compared  with the previous ones for the lscrg and 2po'u states. The guiding 
principle of contraction and expansion for the energy-density relation in 
momen tum space is shown to be common to both the or and 7r states. 
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1. Introduction 

In the early 1940s, an investigation of the chemical bond from the m o m e n t u m  
(p-) space viewpoint was initiated by Coulson and Duncanson [1] based on the 
Dirac-Four ier  t ransform [2] of the coordinate (r-) space wave function. Though 
the wave functions they employed were far less accurate than those available 
today, they [1] gave in a series of papers some significant insight into the p-space 
characteristics of the chemical bonding not only in diatomic H~ and H2 molecules 
but also in simple hydrocarbons.  However ,  the p-space  t reatment  has received 
little attention in molecular quantum mechanics, partly because our everyday 
intuition is more  confined to a space of lengths rather  than that of velocities. 
The m o m e n t u m  electron density p(p),  which is a basic physical quantity in our 
present  approach,  has been examined only in relation to the Compton  profiles 
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of atoms and molecules at their equilibrium conformations. However, the r- and 
p-representations are complementary to one another [2], and a study in p-space 
is expected to provide a new or alternative understanding to the bonding problem. 

Indeed, there seems to be renewed interests on the use of p-space concept for 
several atomic and molecular phenomena in recent years [3]. Especially, we 
have recently proposed a method of momentum density for interatomic interac- 
tions [4] which permits to clarify the origin of nuclear rearrangements (such as 
molecular geometries and chemical reactions) in terms of the concept in p-space 
instead of the usual one in r-space. Considering a uniform scaling process of an 
arbitrary molecular conformation R0 with scaling factor s, we have shown that 
the difference in momentum density p(p) and its modified forms defined by 

Ap(p; s)--=p(p; s)-p(p; co), 

t '  
oo 

Ap(p; s)=--(1/s) j, ds' Ap(p; s'), 

atS(p; s)--= Af(p;  s) + Ao(p; s), 

(la) 

(ib) 

(lc) 

rigorously govern kinetic energy, stabilization energy, and interatomic force of 
the system, respectively. It has been then suggested that the contraction and 
expansion observed in these density differences are important concept which 
characterizes the nature of nuclear rearrangements in p-space. The method has 
been applied to the two lowest tr states of the H~- system [5]. For the attractive 
lstrg and repulsive 2po-u interactions, the behaviour of momentum density and 
its effect on the energy and force have been quantitatively examined. Origin of 
covalent bonding has been also discussed based on the energy partitionings 
proposed previously [4]. 

The purpose of this paper is to extend the application of the momentum density 
approach to the ~r states of the H~- system. For the bonding 2p~ru and antibonding 
3d~'g states, the reorganization of p(p) and its effect on the stabilization/de- 
stabilization of the system are quantitatively investigated in comparison with the 
previous results for the lstrg and 2ptr, states. In the next section, the present 
theory of momentum density is outlined, and the results are discussed in Sec. 
3. Sec. 3.1 provides discussion on the differences between ~r/~" and bonding/anti-  
bonding states in p-space on the basis of the momentum density distributions 
and Compton profiles. The behaviour of momentum density and its energetic 
contribution during the interaction processes are analysed in Sec. 3.2. A tom-  
bond partitioning is also examined. Changes in the average and directional 
Compton profiles and the parallel-perpendicular partitioning of the stabilization 
energy are discussed in Sec. 3.3. 

2. Theoretical  Ground 

For diatomic systems, the scale factor s in Eq. (la-c) can be replaced with 
internuclear distance R. Then the density differences Ap(p; R), A/5(p; R), and 
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At~(p; R) are rigorously related with the kinetic energy AT(R) [-- T(R) - T(oo)], 
stabilization energy 2xE(R) [=-E(R)-E(oo)], and interatomic force F(R) 
[ - -  dE(R)/dR] of the system respectively by [4] 

AT(R) = y dp(p2/2)Ao(p; R), (2a) 

AE(R) = f dp(p2/2)Afi(p; R), (2b) 

F(R) = ( l /R)  I dp (pZ/2)Afi(p; R), (2c) 

where p = IPl. These relations are deduced from the virial theorem and hence 
the validity of the theorem is necessary condition for Eq. (2a-c). In order to 
conserve the number of electrons, the three density differences must satisfy 

f dp Ap(p;R) = f dp Aft(p;R)= f dp &ft(p;R)=0 (3) 

for any value of R. 

Based on Eq. (2) under the condition (3), we can derive some guiding principle 
for the effect of the density reorganization in p-space on the energy and force 
of a system [4]: Negative AT, AE, and F are possible only when the corresponding 
Ap, Aft, and Aft show contraction, i.e. a reorganization of momentum density 
which results in a density increase at lower momentum with a simultaneous 
decrease at higher momentum. On the contrary, positive energies and force 
result only when the momentum densities reveal expansion, i.e. a density reor- 
ganization reverse to the contraction. Therefore, it is, for example, concluded 
that the contraction of Ap at larger R predicts formation of stable chemical 
bonds since the behaviours of AT and AE are parallel in the initial stage of 
interactions [43. At equilibrium separations (Re), expansion of Ap, maximum 
contraction of Aft, and critical behaviour of Aft should be observed. On the other 
hand, monotonous expansion of Ap, At5 , and Aft against R implies that the 
interaction is repulsive and no stable bond is formed. 

Since the kinetic operator (p2/2) appeared in the basic Eqs. (2a-c) is angular- 
independent, Eqs. (1-3) can be rewritten by using the radial momentum density 

1.2~r [,Tr 
I(p;R)=Jo dd, pJ0 dOpp2sinOpp(p;R), (4) 

and the resultant differences in radial density, AI(p ; R), A/(p; R), and A/'(p ; R) 
[5]. These radial densities reduce the required density information from the 
three-dimensional p(p) to the one-dimensional I(p) without loss of generality 
and exactness of the approach. Use of I(p) connects the present approach with 
the experimental Compton profiles in a direct manner: Within the impulse 
approximation, the spherically-averaged intensity of Compton scattering is given 
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by [3] 
/ e  co  

J(q; R) = (1/2) [ d p p - l I ( p ;  R).  (5a) 
JI q l  

Thus the change in Compton profile from separated atoms to molecule is 

AJ(q; R ) - - J ( q ;  R ) - J ( q ;  oo) 
c ~  

=(1 /2 )  f d p p - I A I ( p ; R ) ,  (5b) 
Jl ql 

and hence &/ and AI must show parallel behaviour at a given R. At  stable 
equilibrium, for instance, the half-width of Compton profile should be larger 
than that of separated atoms, since h i  and then AJ expand at this conformation. 

Based on Eqs. (2a-c), we can decompose the energy and force into several 
components which have some physical images [4]. If the parent wave function 
employed is in an L C A O  form, momentum densities p(p) and I (p)  are separated 
into one-center  atomic and two-center interatomic (bond) parts. Then, we can 
distinguish AT, AE, and F into atomic and interatomic contributions. Directional 
partitioning is also possible which results from the decomposition of the kinetic 
operator  into the parallel and perpendicular parts. The latter partitioning is 
closely related with the directional Compton profile, e.g. TIf(R) = 

2 + c o  
I +-~ dPll (Pll/2)JII(PlI; R)  where a~l(ptl; R)  = I_+2 dp • I-~ de• P ( PlZ, P • P ~' ; R)  is the 
profile of Compton scattering along the molecular axis. Details of these energy 
partitionings are given in Ref. [4, 5]. 

3. Behaviour of Momentum Density and Its Energetic Contribution 

3,1. Shapes of  Momentum Density Distribution and Compton Profile 

In the LC AO approximation, the r-space wave function for the 2p~-u and 3dzrg 
states of the H~- system is given by 

~(r) = (2 + 2S)-I/2{XA(r) + X~ (r)}, (6a) 

where S is the overlap integral. In Eq. (6a) and hereafter,  addition and subtraction 
represent the 2p~-, and 3d~rg states, respectively. Since the choice of single 2p~- 
AO for X (r) (i.e. Finkelstein-Horowitz type wave function [6]) yields poor  results 
for the present states 1, we here adopt the Dickinson type wave function [7] 
which consists of 2p~ and 3d~r AOs having the same orbital exponent  (. That is 

XA(r) = c12p~r a (r) + c23dTr A (r), (6b) 

1 For the 2p~r, state, the equilibrium distance and dissociation energy (Re, De) in atomic units are 
(8.82, 0.00218) in the Finkelstein-Horowitz approximation and (8.06, 0.00805) in the Dickinson 
approximation, while the exact values are (7.96, 0.00951). When De is used as a measure, the 
previous results for the lso-~ state [5] based on the Finkelstein-Horowitz wave function are of 85% 
accuracy. In order to attain a comparable accuracy, the Dickinson type wave function is required 
in the 2prr, state. 
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2p~ra(r) = 2(3-1/2)(s/2]r - RA I exp (-~'lr- RAI) Y~,m(O, r (6c) 

3d~'A(r) = 23/23-a5-~/2~'7/21r-- Ral 2 exp (-fflr- RAI) Y2,m(O, ~b), (6d) 

where rn = +1, FIA the position of nucleus A (R = IRA -- RBI), and Yl, m(0, ~b) the 
spherical harmonics. The exponent ( and coefficients c~ and c2 are variationally 
optimized at every R and this guarantees the validity of the virial theorem and 
therefore the basic Eqs (2a-c) of the present approach. 

The Fourier transform [2] of (6a-d) gives the corresponding p-space wave 
function [8] 

O(p) = (2 + 2S)-I/2{XA(D ) 4- XB (13)}, (7a) 

,~A(13) = exp (-io" RA){c12pTr(p) + c23d~r(p)}, (7b) 

2pzr (0) = -i29/23-1/27r-1/2(7/2p (p2  + ~.2)-3 Yt,m (0p, ~p) ,  (7c)  

3dTr (13) = -265-1/27r-1/2(9/2p2(p 2 + ( 2 ) - 4  Y2.~ (0p, q~p). (7d)  

Then the momentum electron density O (13) is 

P (P) = Patom(P) + Pbond(P), (8a)  

Patom(P) = (1 4- S)-1{c~267r-2(7p2(p 2 + ~2)-6 sin 2 0p 

t- 2,.~9,-, -2~9 4e 2 . . 2 \ - 8  c2z ~ ~ P tP " 6 )  sin 20pcos 20p}, (8b) 

Pbond(P) = 4-(1 4-s)-l{c2267r-2(Tp2(p2+ff2) -6 sin 2 0p cos (pR cos 0p) 

+ ClC2217/231/21r-2ffSp3(p2+ ff2)-7 sin 2 0p cos Op sin (pR cos 0p) 

_c~2937r-2(9p4(p2 + ff2)-8 sin 2 0o cos 2 0p cos (pR cos 0p)}, (8c) 

and the radial momentum density I(p) results in 

I(p) =/atom(P) +/bond(P), (9a) 

/a tom(P)  = (1 4- S)-l{C~293-17r-Xf7p4(p 2 + ff2)-6 

+ C22125-1-1~9p6(p2 + (2)-8},  (9b) 

/bond(P)  = 4- (1 4- S)-l{C~29yr-l~Tp2(p 2 + ~ 2 ) - 6 R - 2 [ ( s i n  pR)/pR 

-cos  pR ] + clc2223/231/27r-l (8p3(p2 + (2)-7R-2 

x[-3(cospR)/pR+(3/p2R2-1)  sm p N l - C z Z "  " ~  2,, a2,,.~cr -a~9 g 

x p3(p2+ (2)-8R-3[(12/p R -pR)  cos pR + (5 - 12/pZR 2) sin pR]}, 
(9c) 

where spherical coordinates (p, 0p, ~bp) are used for 13 with the pz-axis parallel to 
the molecular axis. 

Typical profiles of p(13), I(p), and J(q) are respectively shown in Figs. 1, 2a, 
and 2b. The figures also include the results for the or states [5] for comparison. 

2 The coefficients cl and c2 in (6b) satisfy c~+ca9 = 1 from the normalization of AO. 
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Fig. 1. Perspective plots of momentum electron density distribution for the o" and zr states of the 
+ 

H2 system. These plots are drawn for the region -1 -<Px < 1 and -1 ---Pz -< 1 in the same scale from 
the same visual point. All values are given in atomic units 

The  C o m p t o n  profiles J(q) have been  calculated numerical ly  applying the Gauss  
integrat ion formula  [9] to Eqs. (5a) and (9a-c).  

In Fig. 1, the direct ional  character  of P(O) is shown to be same to that  of p(r), 
the electron density in r-space,  since the Four ier  t ransform does not  change the 
angular  par t  of A O  (see Eqs. (6) and (7)). The  m o m e n t u m  densities for the ~- 
states have a nodal  plane parallel to the b o n d  (p=) axis, while those for  the o- 
states do not.  In addit ion,  the densities for the 3d~'g and 2pO-u states have a node  
perpendicular  to the Pz axis due to the ant ibonding nature.  In Figs. 1 and 2a, 
P(P) and I(p) have sharper  and higher  peaks  near  the origin for the Ir states 
than for  the tr states. The  same t rend is observed  in J(q) depicted in Fig. 2b. 
This means  that  the ~r densi ty is more  cont rac ted  than the or densi ty in p - space  
and therefore  electron has smaller kinetic energy  in the ~- states. Since the r- 
and p - space  wave functions of a system emphasize  inverse regions of the respec- 
tive spaces [3], the cont rac ted  nature  of the ~r density in p - space  is a direct  
reflection of the delocalized and diffusive nature  of the density in r-space.  W h e n  
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Fig. 2. Radial momentum electron density distributions I(p) and average Compton profiles J(q) 

compared to the results for the isolated atoms, the momentum densities expand 
in the molecule with a simultaneous increase in the kinetic energy. In Fig. 2a, 
the position of peak is a good measure of the degree of expansion; the expansion 
increases in the order of 2p~-(H) < 2p~'. < 3dTrg << ls(H) < 1So'g < 2po'.. The order 
of expansion also holds for J(q) in Fig. 2b and J(0) is a good measure in this 
case. (Note that J(0) is just half the expectation value (p-l> from Eq. (5a).) 
These observations exemplify the predicted parallelism between the behaviours 
of l(p) and J(q) (see Sec. 2). 

3.2. Behaviour of Momentum Density 

We here examine the behaviour of momentum density and its effect on the 
energy and force of the system during the processes of attractive and repulsive 
interactions. For the sake of simplicity, we proceed with our study using the 
radial density distribution. The difference AI is immediately obtained from Eq. 
(9) by subtracting the hydrogen-atomic 2 p ~ r  density I2p,~(p) = 
(4/3r -6. The modified differences Af  and 2~/" are numerically 
calculated using the Gauss and Filon integration formulas [9]. These density 
differences for the 2p~r, state are given in Fig. 3 for several R, and the resultant 
AT and AE curves are shown in Fig. 4 together with their atom-bond and 
parallel-perpendicular partitionings. The curves for F and its components are 
not given since they are merely the gradients of the corresponding hE and its 
components. Figs. 5 and 6 summarize the results for the repulsive 3d~rg state. 

In the 2pTr, state (Figs, 3 and 4), the 2xI plots initially show contraction (R = 20 
and 12 a.u.) and then expansion (R = 8 and 6 a.u.). (The expansion at R = Re is 
also observed in Figs. 1 and 2a.) The contraction at large separations reflects 
the r-space concept of the delocalization of electron density or the enlargement 
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Fig. 3. The 2p~', state. Differences in the radial momentum density distributions. The AL h~ and 
AI govern AT, hE, and F, respectively. All values are given in atomic units 

of the space of e lectron mot ion ,  whi le  the expans ion  at small  separations reflects 
the  increased local izat ion of  the r-space densi ty  around the two nuclei .  These  
reorganizat ions  of  m o m e n t u m  densi ty  result  in negat ive  and pos i t ive  AT, respec-  
t ively,  and the critical point  is calculated to be R = 9.1 a.u. where  A T  vanishes  
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Fig. 5. The 3d~'g state. See the captions to Fig. 3 
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(see Fig. 4). According to the guiding rule, the initial contraction and final 
expansion of the difference density AI predict the presence of a stable bond in 
this state, which will be clarified by the examination of A [  and AI" plots. The 
difference A f  in Fig. 3 shows contraction for R-->8 a.u. and its magnitude 
increases as R decreases. This implies negative AE and increasing stability of 
the system up to 8 a.u. At  R -- 6 a.u., however,  an expansive nature appears at 
a large p-region (p > 0 . 8 7  a.u.) which cancels in part the contraction. This 
corresponds to the turning up of the AE curve for R < R e  (see Fig. 4). The 
modified difference A[, which is the origin of the interatomic force F, shows 
contraction for R -- 20 and 12 a.u. and expansion for R = 6 a.u. For Re = 8 a.u., 
it reveals both the contraction at small p and expansion at large p. When the 
weighting factor (p2/2)  is taken into account,  their contributions are shown to 
be in the same magnitude and there is no total contribution. The resultant force 
is attractive (F < 0) for R->  12 a.u., zero  for Re = 8 a.u., and repulsive ( F >  0) 
for R = 6 a.u., in accordance with the result of the AE curve. 
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In the 3d~-g state, all the momentum densities AL A~ and Ai  given in Fig. 5 
show expansion whose degree increases rapidly as R decreases. In the antibond- 
ing state, the existence of the nodal plane Pz = 0 prohibits the density from 
distributing in the low-momentum region around the origin, leading to the 
expansion of momentum density (see Fig. 1). The corresponding picture in 
r-space is that the electron is confined to a narrower space in molecular system 
than in free atoms due to the r-space node which bisects the molecular axis. 
These expansions are responsible for monotonous increases of AT, hE, and F 
(Fig. 6), meaning that no stable bonds are formed in this state. 

The proposed guiding principle [4] for the relation between the reorganization 
of momentum density and its effect on the energy and force of a system are thus 
shown to be valid and common to both the o" and ~- states. 

The results for the atom-bond partitioning also show the same trend as those 
of the o- states. In the bonding 2p~ru state, the density flows from the one-center  
atomic to the two-center bond part (see dashed lines for R = 8 a.u. in Fig. 3). 
The decrease in the atomic density causes a decrease of the kinetic pressure in 
this part, which predominantly contributes to lower the kinetic and total energies 
(Fig. 4). The atomic part is important to initiate and accelerate the reaction, 
while the bond part is to terminate the reaction. In the 3d~-g state, the density 
flows in the opposite way (Fig. 5) and the kinetic pressure increases in the atomic 
part. As a result, the atomic part is the predominant  origin of the destabilization 
of the system (Fig. 6). 

3.3. Behaviour of Average and Directional Compton Profiles 

In this subsection, the behaviours of Compton profiles are examined. The 
parallel-perpendicular partitioning of the stabilization energy is also discussed 
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based on the directional Compton profiles. The average profile is obtained by 
substituting the radial momentum density (9) into (5a), while the directional 
profiles are given by 

JII(PlI) = (1 + S ) - 1 { c ~ 2 4 5 - 1 7 r  1~7z14 (1 :t: COS pllR) 

:t: ClC2215/23-1/25-1~-1(8pIIZ 15 sin Pll R 
2 8 --1 --1 9 2 --6 +c22  7 ~r ,~" PllZl (l~:cosPllR)}, (10a) 

Jl(P• (1 -t- o \ - - l r  2~--1  - -1 .7e ra6  2 --5 = o )  l C l ~  i r  ~ kZ p •  -F23Z24 
1 2 - -5/2  5 +6 (p• R Ks(Z3)+z;2R4K4(z3))] 

- 1 / 2  - 3 / 2  --1 - 1  8 - 2  5 2 - 5 / 2  6 +CAC22 3 5 Ir ~ [z2 R K4(z3)+P• R K s ( z 3 ) ]  

..~_ 2 ~  1 - - l ~ 9 r ~ 6 L - - - 1  - 5  _t_27p2z;6 m30-1(llzzS/2R5Ks(z3) c2/  Ir ~ tz ~ z2 

+(12p~_~2)z23R6K6(z3) 2 - 5 / 2  7 -p_Lz2 R K7(z3))]}, (10b) 

.r~,(p• = L ( p ~ , ) ,  O0c) 
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Fig. 7. The 2p~r. state. Differences in the average and directional Compton profiles. All values are 
given in atomic units 
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2 2 ~2)1/2,  where Zl = (PI~ + ~.2), z2 = (p• + (2), z3 = R (p• + and K~(z) is the modified 
Bessel function. 

The changes of the average, parallel, and perpendicular Compton profiles, A J, 
A3~I, and M . ,  from the isolated atoms are depicted in Fig. 7 for the 2prru state 
and in Fig. 8 for the 3d,n'g state. As expected theoretically from Eq. (Sb), the 
behaviour of the average profile AJ is parallel to that of AI (see Sec. 3.1.). 
Namely, in the 2prru state, AJ contracts for R = 12 a.u. and expands for R = 8 a.u. 
(Fig. 7), whereas in the 3dcr~ state AJ expands monotonously (Fig. 8). These 
contraction and expansion in AJ correspond respectively to negative and positive 
AT as those of AI do. The parallelism between AJ and AI is also found in the 
o" states (Fig. 2). 

The directional profiles and their energetic contributions also obey the guiding 
rule. In the 2p~ru state (Fig. 7), contractions are observed in both AJ~I and 2 0 .  
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at larger separations (e.g. R = 12 a.u.) and therefore AEII and A E I  cooperatively 
work to stabilize the system (Fig. 4). This is mainly attributed to the extension 
of the space of electronic motion f rom atoms to molecule. A small but nonnegli- 
gible decrease in the orbital exponent  also assists the contraction. At  smaller 
separations (e.g. R = 8 a.u.), however,  A J• changes to expansion and the parallel 
part  is a dominant  origin of the stability of the molecule (i.e. R = Re). The latter 
expansion may be due to the increased orbital exponent  in this R- range  which 
predominant ly  contributes to increase the kinetic pressure in the perpendicular 
direction. In the 3dTrg state, both the parallel and perpendicular parts expand 
(Fig. 8) and they cooperatively contribute to destabilize the system (Fig. 6). As 
ment ioned before,  the presence of a nodal plane pz = 0 in this state works to 
transfer m o m e n t u m  density f rom the low m o m e n t u m  region around the origin 
to the high m o m e n t u m  region (see also Fig. 1). In this state, the orbital exponent  
increases monotonously  as R decreases and the electron is bound more  tightly 
to the nuclei in r-space. The relative importance of the directional components  
in the 7r states is slightly different f rom the previous one in the or states. In the 
cr states, the parallel part  has been shown to be of pr imary importance [5], but 
in the 7r states there are R -ranges where the perpendicular component  dominates 
over  the parallel one. 

4. Summary 

The method of m o m e n t u m  electron density for interatomic interactions has been 
applied to the 2p~-~ and 3dTrg states of the H~ system. The behaviours of 
m o m e n t u m  density and Compton  profile have been analysed in detail during 
the interaction processes together  with their effects on the energy and force of 
the system. The results have been compared  with those of the lso-g and 2po-~ 
states studied previously. The guiding principle for the behaviour of momen tum 
density has been shown to be valid and common to both the ~r and ~r states. It  
has been also exemplified that the principle applies to the change of Compton  
profile during the course of interactions. 
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